Apr 6, 2014

Zener diode voltage regulator

                                         Zener diode voltage regulator

    I.            Aim
 To construct a zener diode voltage regulator and measure its line and load regulation.

 II.            Apparatus
Zener diode, resistor, variable DC power supply, milliammeter, voltmeter, Rheostat and wire.

III.            Theory
 The Zener diode is like a general-purpose signal diode. When biased in the forward direction it behaves just like a normal signal diode, but when a reverse voltage is applied to it, the voltage remains constant for a wide range of currents.
                         Symbol of Zener Diode
                                                                    Fig 1: Symbol for zener diode
Avalanche Breakdown: There is a limit for the reverse voltage. Reverse voltage can increase until the diode breakdown voltage reaches. This point is called Avalanche Breakdown region. At this stage maximum current will flow through the zener diode. This breakdown point is referred as “Zener voltage”.
The Zener Diode is used in its "reverse bias". From the I-V Characteristics curve we can study that the zener diode has a region in its reverse bias characteristics of almost a constant negative voltage regardless of the value of the current flowing through the diode and remains nearly constant even with large changes in current as long as the zener diodes current remains between the breakdown current IZ(min) and the maximum current rating IZ(max).

This ability to control itself can be used to great effect to regulate or stabilise a voltage source against supply or load variations. The fact that the voltage across the diode in the breakdown region is almost constant turns out to be an important application of the zener diode as a voltage regulator

      i.            Characteristics

Fig 2: Zener diode characteristic curve
Figure 2 shows the current versus voltage curve for a Zener diode. Observe the nearly constant voltage in the breakdown region.

The forward bias region of a Zener diode is identical to that of a regular diode. The typical forward voltage at room temperature with a current of around 1 mA is around 0.6 volts. In the reverse bias condition the Zener diode is an open circuit and only a small leakage current is flowing as shown on the exaggerated plot. As the breakdown voltage is approached the current will begin to avalanche. The initial transition from leakage to breakdown is soft but then the current rapidly increases as shown on the plot. The voltage across the Zener diode in the breakdown region is very nearly constant with only a small increase in voltage with increasing current. At some high current level the power dissipation of the diode becomes excessive and the part is destroyed. There is a minimum Zener current, Iz(min), that places the operating point in the desired breakdown. There is a maximum Zener current, Iz(max), at which the power dissipation drives the junction temperature to the maximum allowed. Beyond that current the diode can be damaged. Zener diodes are available from about 2.4 to 200 volts.

    ii.            Zener Diode as Voltage Regulators

The function of a regulator is to provide a constant output voltage to a load connected in parallel with it in spite of the ripples in the supply voltage or the variation in the load current and the zener diode will continue to regulate the voltage until the diodes current falls below the minimum IZ(min) value in the reverse breakdown region. It permits current to flow in the forward direction as normal, but will also allow it to flow in the reverse direction when the voltage is above a certain value - the breakdown voltage known as the Zener voltage. The Zener diode specially made to have a reverse voltage breakdown at a specific voltage. Its characteristics are otherwise very similar to common diodes. In breakdown the voltage across the Zener diode is close to constant over a wide range of currents thus making it useful as a shunt voltage regulator.

The purpose of a voltage regulator is to maintain a constant voltage across a load regardless of variations in the applied input voltage and variations in the load current. A typical Zener diode shunt regulator is shown in Figure 3. The resistor is selected so that when the input voltage is at VIN(min) and the load current is at IL(max) that the current through the Zener diode is at least Iz(min). Then for all other combinations of input voltage and load current the Zener diode conducts the excess current thus maintaining a constant voltage across the load. The Zener conducts the least current when the load current is the highest and it conducts the most current when the load current is the lowest.
                                                Fig 3: Zener diode shunt regulator
                                                             Fig 3: Zener diode shunt regulator

If there is no load resistance, shunt regulators can be used to dissipate total power through the series resistance and the Zener diode. Shunt regulators have an inherent current limiting advantage under load fault conditions because the series resistor limits excess current.    
 A zener diode of break down voltage Vz is reverse connected to an input voltage source Vi across a load resistance RL and a series resistor RS. The voltage across the zener will remain steady at its break down voltage VZ for all the values of zener current IZ as long as the current remains in the break down region. Hence a regulated DC output voltage V0 = VZ is obtained across RL, whenever the input voltage remains within a minimum and maximum voltage.

Basically there are two type of regulations such as:

a) Line Regulation

In this type of regulation, series resistance and load resistance are fixed, only input voltage is changing. Output voltage remains the same as long as the input voltage is maintained above a minimum value.

b) Load Regulation

In this type of regulation, input voltage is fixed and the load resistance is varying. Output volt remains same, as long as the load resistance is maintained above a minimum value.

  iii.            Design a Voltage Regulator
When selecting the zener diode, be sure that its maximum power rating is not exceeded.
Imax             Maximum current for Zener diode

«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msub»«mi»I«/mi»«mrow»«mi»m«/mi»«mi»a«/mi»«mi»x«/mi»«/mrow»«/msub»«mo»=«/mo»«mfrac»«mrow»«mi»P«/mi»«mi»o«/mi»«mi»w«/mi»«mi»e«/mi»«mi»r«/mi»«/mrow»«mrow»«mi»Z«/mi»«mi»e«/mi»«mi»n«/mi»«mi»e«/mi»«mi»r«/mi»«mo»§nbsp;«/mo»«mi»v«/mi»«mi»o«/mi»«mi»l«/mi»«mi»t«/mi»«mi»a«/mi»«mi»g«/mi»«mi»e«/mi»«/mrow»«/mfrac»«/math»
VZ          Zener Diode standard  voltage 
Vin          Input voltage(it is known)
Vs           Voltage across series resistance
VL           Voltage across the load resistance
IS            Current passing through the series resistance
IZ            Current passing through the Zener diode
IL            Current passing through the load resistance

  iv.            Calculating voltage and current 
The total current drawn from the source is the same as that through the series resistor 
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msub»«mi»I«/mi»«mi»S«/mi»«/msub»«mo»=«/mo»«mfrac»«msub»«mi»V«/mi»«mi»S«/mi»«/msub»«msub»«mi»R«/mi»«mi»S«/mi»«/msub»«/mfrac»«/math»
The current through the load resistor is  
 «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msub»«mi»I«/mi»«mi»L«/mi»«/msub»«mo»=«/mo»«mfrac»«msub»«mi»V«/mi»«mi»L«/mi»«/msub»«msub»«mi»R«/mi»«mi»L«/mi»«/msub»«/mfrac»«/math»
 and the zener diode current is 
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msub»«mi»I«/mi»«mi»Z«/mi»«/msub»«mo»=«/mo»«msub»«mi»I«/mi»«mi»S«/mi»«/msub»«mo»-«/mo»«msub»«mi»I«/mi»«mi»L«/mi»«/msub»«/math»

If the voltage source is greater than Vz
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msub»«mi»V«/mi»«mi»s«/mi»«/msub»«mo»=«/mo»«msub»«mi»V«/mi»«mrow»«mi»i«/mi»«mi»n«/mi»«/mrow»«/msub»«mo»-«/mo»«msub»«mi»V«/mi»«mi»L«/mi»«/msub»«/math»  and  «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msub»«mi»V«/mi»«mi»L«/mi»«/msub»«mo»=«/mo»«msub»«mi»V«/mi»«mi»Z«/mi»«/msub»«/math»
 If the voltage source is less than Vz

 «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msub»«mi»V«/mi»«mi»s«/mi»«/msub»«mo»=«/mo»«mfrac»«mrow»«msub»«mi»R«/mi»«mi»S«/mi»«/msub»«mo»*«/mo»«msub»«mi»V«/mi»«mrow»«mi»i«/mi»«mi»n«/mi»«/mrow»«/msub»«/mrow»«mrow»«mo»(«/mo»«msub»«mi»R«/mi»«mi»S«/mi»«/msub»«mo»+«/mo»«msub»«mi»R«/mi»«mi»L«/mi»«/msub»«mo»)«/mo»«/mrow»«/mfrac»«/math»   and    «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msub»«mi»V«/mi»«mi»L«/mi»«/msub»«mo»=«/mo»«mfrac»«mrow»«msub»«mi»R«/mi»«mi»L«/mi»«/msub»«mo»*«/mo»«msub»«mi»V«/mi»«mrow»«mi»i«/mi»«mi»n«/mi»«/mrow»«/msub»«/mrow»«mrow»«mo»(«/mo»«msub»«mi»R«/mi»«mi»S«/mi»«/msub»«mo»+«/mo»«msub»«mi»R«/mi»«mi»L«/mi»«/msub»«mo»)«/mo»«/mrow»«/mfrac»«/math»

IV.            Procedure

Using the circuit diagram, identify the connections in the given platform. Connections are made as shown in the below diagram.

i.                     Line regulation

1.      Choose the zener diode to start the experiment.
2.      Insert the series resistance value.
3.      Fix the load resistance value by using Load Resistance slider.
4.      Change the Rheostat value from maximum to 0 by the interval 100.
5.      Note down the corresponding input voltage and output voltage and tabulate it.
6.      Plot the graph in which VIN at x-axis VL at y-axis.
                                                Percentage of Line regulation =«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mfenced close=¨]¨ open=¨[¨»«mfrac»«mrow»«mo»§#8710;«/mo»«msub»«mi»V«/mi»«mn»0«/mn»«/msub»«/mrow»«mrow»«mo»§#8710;«/mo»«msub»«mi»V«/mi»«mrow»«mi»I«/mi»«mi»N«/mi»«/mrow»«/msub»«/mrow»«/mfrac»«/mfenced»«mo»*«/mo»«mn»100«/mn»«/math»

ii.                   Load Regulation

1.      First 3 steps are same as above.
2.      Fix the Rheostat value, to get the 12 V at voltmeter across rheostat. 
3.      Change the load Resistance with the interval of 100 Ω/1000 Ω up to maximum range.
4.      Note  the reading and tabulate it.
5.      Plot the graph between V0 along x-axis and RL along y-axis.

                                           Percentage of Load regulation =«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mfenced close=¨]¨ open=¨[¨»«mfrac»«mrow»«msub»«mi»V«/mi»«mrow»«mi»N«/mi»«mi»L«/mi»«/mrow»«/msub»«mo»-«/mo»«msub»«mi»V«/mi»«mrow»«mi»F«/mi»«mi»L«/mi»«/mrow»«/msub»«/mrow»«msub»«mi»V«/mi»«mrow»«mi»N«/mi»«mi»L«/mi»«/mrow»«/msub»«/mfrac»«/mfenced»«mo»*«/mo»«mn»100«/mn»«/math» 

 V.            Conclusion
The Zener diode, with its accurate and specific reverse breakdown voltage, allows for a simple, inexpensive voltage regulator. Combined with the right resistor, fine control over both the voltage and the supply current can be attained.

However, the low power ratings of standard Zener diodes and resistors make this solution impractical for high power devices.

                               Percentage of Line regulation =«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mfenced close=¨]¨ open=¨[¨»«mfrac»«mrow»«mo»§#8710;«/mo»«msub»«mi»V«/mi»«mn»0«/mn»«/msub»«/mrow»«mrow»«mo»§#8710;«/mo»«msub»«mi»V«/mi»«mrow»«mi»I«/mi»«mi»N«/mi»«/mrow»«/msub»«/mrow»«/mfrac»«/mfenced»«mo»*«/mo»«mn»100«/mn»«/math»=

                               Percentage of Load regulation =«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mfenced close=¨]¨ open=¨[¨»«mfrac»«mrow»«msub»«mi»V«/mi»«mrow»«mi»N«/mi»«mi»L«/mi»«/mrow»«/msub»«mo»-«/mo»«msub»«mi»V«/mi»«mrow»«mi»F«/mi»«mi»L«/mi»«/mrow»«/msub»«/mrow»«msub»«mi»V«/mi»«mrow»«mi»N«/mi»«mi»L«/mi»«/mrow»«/msub»«/mfrac»«/mfenced»«mo»*«/mo»«mn»100«/mn»«/math» =
VI.            Precautions
Ø  All connections  should be neat ,clean and tight
Ø  Key should be used in circuit and opened when the circuit is not being used.

VII.            Uses
Ø  Zener diodes are widely used as voltage references and as shunt regulators to regulate the voltage across small circuits.
Ø  Zener diodes are also used in surge protectors to limit transient voltage spikes
Ø  Another notable application of the zener diode is the use of noise caused by its avalanche breakdown in a random number generator
VIII.            References
Ø  Gates, Earl. Introduction to electronics. Clifton Parks, NY: Delmar, 2011.
Ø  Comprehensive Practical Physics
Ø  Harrison, Linden. Current sources & voltage references. Amsterdam New York: Newnes, 2005.